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COMMENT 

Ground state properties of a quantum antiferromagnet with 
infinite-range interactions 

C Kaiser and I Peschel 
Fachbereich Physik, Freie Universitat Berlin, Arnimalle 14, D-1000 Berlin 33, West 
Germany 

Received 5 June 1989 

Abstract. We discuss the order of a Heisenberg antiferromagnet in the ground state for 
isotropic and anisotropic exchange with and without a staggered field. 

Heisenberg quantum antiferromagnets in two dimensions have been the subject of 
quite a few recent studies. Of main interest here is the nature of the ground state and 
its possible order. In  this context, a solvable model can be quite useful in order to 
understand general aspects of the symmetry breaking. This has been pointed out by 
Kaplan et a1 [l]. They proposed to study a model with infinite-range interactions 
introduced by Lieb and Mattis [2-41. In this comment we want to treat this model in 
some detail both for isotropic and anisotropic exchange. The choice of the interaction 
has interesting implications. For the isotropic model there is a simple angular momen- 
tum representation of the ground state and including a staggered field one can produce 
the order parameter directly. We show that this problem is closely related to the 
quantum harmonic oscillator. We also comment on the character of the isotropic 
ground state in the resonant valence-bond (RVB)  picture. 

Consider two ‘sublattices’ A and B, each containing N spins one-half. Each spin 
interacts with all spins in the other sublattice via an exchange coupling of order 1 /N  
to make the system extensive. Then the Hamiltonian, including a staggered field H , ,  
is (regardless of the dimension) 

Here SA, SB are the total spins of the sublattices and M, = SA - SB is the staggered 
magnetisation. 

Consider first the isotropic case, A = H ,  = 0. We are then dealing with a sort of 
free atom where two large spins are coupled to a total spin S = SA + SE. The lowest 
eigenstates of X are those where the sublattice spins are maximal, SA = SB = N / 2 ,  and 
will be denoted by IS, M )  where M is the z component of S. Their energy is given by 

O s S s N .  

The ground state 10,O) is a singlet as usual [ 2 ] ,  which can easily be written down here 
[ 5 ] .  Equation ( 2 )  shows that for N +. 00, infinitely many of the other states become 
degenerate with it. This is what one expects for such a system with continuous symmetry 
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[ 6 ] .  The states IS, M )  are also exact eigenstates of M :  = 2(Sf, + S i )  - S2.  In the ground 
state one obtains for m, = M,/ N 

2 
N 

( m 3 = 3 ( ( m f ) ’ ) =  I+--. (3)  

The deviation from the classical value 1 is a quantum correction due to the finite length 
of SA and S,. Either m: or (m,’)’ can be used to measure the order but the values 
differ by a factor of three. This has caused some debate on the proper choice of the 
order parameter [ 1 ,7 ,  81; see below. 

We now include the field H,. Then the states IS, M )  are coupled via the matrix 
elements [9] 

@ - I ,  MIM:IS, w = m  ( 4 )  

where 

( S 2  - M 2 ) [  (2SA + 1)2 - S2] 

4S2- 1 AS, M )  = 

The new ground state lies in the subspace with M = 0 and is of the form Xs O(S)IS, 0) 
where O(S) is a solution of the equations 

-hS- l@(S-  1) + hsO(S)  -hs@(S+ 1 )  = E @ ( S )  ( 6 )  

with As = S ( S +  1) /2N2 ,  hs = h m / 2 ,  h = H,/J and E = ( E  - E,)/JN. We are 
interested in the thermodynamic limit, i.e. a large system and a small field. This is the 
standard way to determine the order parameter. Now for h >> 1/  N 2 ,  a large number 
of states IS, 0) will be involved and @ ( S )  will vary smoothly with S. This suggests 
taking a continuum limit in (6). Since for 1 << S<c N, hs is practically constant, hs = h / 2 ,  
this leads to the equation 

1 d2@ 1 
2 dS2  2 

-- -+- w2S2@(S)  = v @ ( S )  (7) 

where w 2  = 1/ N2h,  v = ( E  + h ) /  h. This is the Schrodinger equation for the harmonic 
oscillator. Our solutions have to vanish at S = 0, so the lowest eigenvalue is v = 3w/2 
or  

3 4  
E = -h +- - 

2 N ’  

Then (ma) follows from -&/ah and is 

( 9 )  
3 1  

4 N 4 ’  
( m ‘) = 1 - - - 

The results of the continuum limit change only slightly if one diagonalises the exact 
equations (6) numerically. The exact @ ( S )  has essentially the same form as the first 
oscillator function. From a finite-size scaling analysis one then finds for N >> 1 and 
1/N2< h<< 1 

(m:)=l+----- a b 1  
N N d %  

with a = 0.8, b = 0.5. 
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We see that in the thermodynamic limit ( m f )  = 1,  which is the same as J ( m : )  without 
a field. Thus the calculation confirms the classical picture that the vector length m: 
is the proper order parameter here and that the field just turns m, in the right direction 
[ l ,  71. For this, however, one needs more than just the first excited state. 

Consider now the anisotropic system, A # 0, H ,  = 0. The special cases A = -CO, 1,  
2 correspond to the Ising limit, the XY model and the isotropic ferromagnet. Again 
the states IS, M )  are coupled, this time via the matrix elements (which follow from (4))  

( 1 1 )  

- 

(S, Mis;s',ls, M ) = $ ( M 2 - - f ( S ,  M ) - f ( S + l ,  M ) )  

The spectrum of X can be obtained as before. The qualitative features, however, can 
already be seen from first-order perturbation theory. In the planar region ( A  > 0) from 
each S-multiplet the states evolving from IS, + S )  are shifted towards the ground state 
and become exactly degenerate with it at the ferromagnetic point. In the uniaxial 
region ( A  < 0) only the state I 1 , O )  moves down and for N + CO one has the usual twofold 
degeneracy of the Ising model. The ground state again lies in the subspace M = 0. 

In figure 1 we show numerical results for ( (mi ) ' )  as a function of A. We see the 
expected behaviour, namely a rapid increase in the uniaxial region, where ( m : )  is the 
proper order parameter, and a rapid decrease in the planar region, where m,5 will lie 
in the xy plane. The curves become rapidly steeper as the size of the system increases. 
The vector length (mf) is roughly independent of A. In the two limiting cases, one can 
derive analytical results, namely Ising case: ( ( m t ) 2 )  = I ,  (mf) = 1 + 1/2sA; isotropic 
ferromagnet: ( ( & I 2 ) =  1/(4SA - I ) ,  (m:)  = 1 + 1/2sA+ 1/(4SA- 1 ) .  Thus the correc- 
tions to the asymptotic values are of the order 1/N. This also holds for general A. 

Returning to the isotropic model, we ask how the ground state 10,O) looks in the 
RVB picture, i.e. in terms of singlet products (Rumer functions [lo, 1 1 1 ) .  It is then 

A 

Figure 1. Expectation value of ( m i ) 2  in the ground state as a function of the anisotropy. 
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Figure 2. Types of Rumer functions for a ring of eight spins. The thick arrows denote 
singlet states between the two spins involved. Altogether there are 14 functions. 

convenient to put the system on a ring with A ( B )  spins on the even (odd)  sites. Then 
for N = 4  one has the three types of functions shown in figure 2. Because of the 
translational invariance of the ground state, all functions of one type occur with the 
same weight. The symmetry of 10,O) against permutations of sublattice spins then fixes 
the relative weight of the three classes. The result is 

2 
IO, 0) = (la) -fl b )  - I C ) ) .  (13) 

This should be compared with the ground state for the ring with nearest-neighbour 
interactions [ 121. There the coefficients are 0.30 x (1,0.36,0.10). Thus in our case ‘long 
singlets’ appear with larger weight, which is quite reasonable. However, it is hard to 
draw conclusions just from the size of the coefficients since the Rumer functions are 
not orthogonal. For example, the spin correlation functions for the two systems with 
N = 4 are not very different. For our model, it is easy to derive (S,S,)  in the angular 
momentum representaticn (the function oscillates between a and - - a  - 1 / 2 N  for 
even/odd separations). With the Rumer functions, the calculation is much more 
involved. Also the expansion of 10,O) for general values of N will be complicated 
since one expects that all classes of Rumer functions will enter with different weights. 
We have not solved this problem, but it would be of interest in connection with other 
calculations where long-range singlets play a role [ 131. 

To sum up, we have studied a quantum mechanical model which can essentially 
be solved exactly and  which allows one to study the thermodynamic limit in which 
classical behaviour is recovered. We should mention that recently the Hubbard model 
with infinite-range hopping has also been treated [ 141. Our model with A = H, = 0 is 
a special case of that. 
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